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The internal wave pattern produced by a sphere moving 
vertically in a density stratified liquid 

By D. E. MOWBRAYt AND B. S. H. RARITY$ 
Department of the Mechanics of Fluids, University of Manchester 

(Received 20 December 1966) 

Experiments were conducted to test the linear theory of internal gravity waves 
produced in a stably stratified liquid by the steady vertical motion of a sphere. 
The measurements of the phase configuration in a medium whose density 
increased linearly with depth were made by means of a Toepler-schlieren system. 
The agreement between observation and prediction was found to be good. 

1. Introduction 
The phase configuration of internal waves produced in a stratified fluid by a 

body accelerating in a vertical direction from rest has been discussed by Warren 
(1960). The limiting form of the wave pattern existing after a sufficiently long 
time was sought and found to exist for an ascending body, but was not shown to 
exist for a descending body. Lack of knowledge of the appropriate boundary 
conditions far from the body prevented Warren from treating the steady problem. 
Lighthill (1965, 1967) has generalized the principle of Lamb (1916) by means of 
which the radiation condition in problems of forced oscillations can be accom- 
modated and he has used, as one of several examples of the applications of the 
extended principle, the steady pattern produced by a sphere rising or falling 
uniformly in a stratified liquid. Although this problem does not demonstrate the 
full power of the extension, the wave pattern has the merit of agreeing closely 
with the predictions of the linear theory. 

The analysis is developed, f is t ,  in terms of the Lamb-Lighthill principle and 
the method of stationary phase and subsequently in terms of the kinematics of 
wave crests, following the work of Ursell (1960). The present paper considers in 
detail the phase properties of the wave system and presents results of experi- 
mental measurements of the wave pattern obtained by means of a Toepler- 
schlieren system. The techniques used were essentially the same as those used 
by the authors in their investigation of the wave patterns produced by two- 
dimensional stationary disturbances; see Mowbray & Rarity (1967) and Mowbray 
(1967). It is found that the form of the crests and troughs agrees closely with the 
linear theory, that the patterns are fixed and identical, relative to the sphere, 
both when the sphere is ascending and when it is descending, and that crests do 
not pass through the disturbance. 
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2 Now at the Department of Mathematics, University of Manchester. 
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2. The dispersion relation and its implications 
If p denotes the density, q the velocity, p the pressure and g the acceleration 

due to gravity, the equations of motion relative to a set of cylindricd poIar axes, 
with r horizontal and y vertical and positive upwards, moving with a velocity V 
in the y direction, may be written in the form 

where u and v are the components of q conjugate to r and y respectively and 
D/Bt  denotes a a  a 

- + u - + ( v - V ) - .  
at ar aY 

If we denote by a suffix zero quantities with their equilibrium values and by a 
dash small disturbances from the equilibrium, and if we define a perturbation 
stream function Y by the relations ru = aY/ay, rv = - aY/ar, then the linearized 
equations of motion are 

suf apt 
PO% = -z9 

where 6/6t denotes a/at - V ajay. Eliminating the pressure gradient terms and the 
density, we obtain 

po st dy st po dy s t 2  

-+ 82 1 sp, 6 )  ( i a ~  --+- a (lay)] -- + ( 1 ~ p ,  6 
6t2 po 6t 6t r ay2 ar r ar 

If we look for a solution of the form 

Y = Y * exp (w: y/2g) exp (i(Py - wt)}, 

where w: = - (g/p,)/(dp,/dy) denotes the square of the Vaisala-Brunt frequency, 
and if we consider waves whose wavelength is short compared with both the 
scale of density gradient /po/(dpo/dy)/ and the scale of thegradient of Ipo/(dpo/dy) 1 ,  
then Y * may be expressed in terms of Bessel functions of order one and argument 
ar where 

Thus for sufficiently large r ,  we may write the solution as 

S(a,P,w) E w +  Vp-woa(a"p2)-4 = 0. 
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Lighthill (1965) shows how the integral is to be interpreted to satisfy the 
radiation condition; in the present case it reduces to the condition of Lamb (1916), 
that the component, in the direction of the phase velocity, of the velocity of the 
disturbance should be equal to the phase velocity, which is equivalent to 
#(a,p,O) = 0. Disturbances are propagated only in the direction of positive 
group velocity, that is in the directions of normals to the curve w = 0 in the senses 
indicated in figure 1. Thus we see that for a sphere travelling with velocity V 
upwards the waves are everywhere below the body. 

1 1 I 
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FIGURE 1. The curve o = 0 ; the arrows indicate the normals in the 

direction of w > 0. 

Let us consider the phase configuration. The disturbance may now be repre- 
sented by 

Y? = S f (y , r ,a (P) ,B)exp{ i ( s (P) r+Py)~dB,  

where a = a(P) is determined from the relation S(a,P, 0 )  = 0. We define the 
angle I,? to be the angle between the wave-number vector (a, P )  and the vertical; 
hence sin I,? = a(a2 +P2))t.  As in the case of two-dimensional stationary distur- 
bances, I,? can be shown to be the angle between the tangent to the crest and the 
horizontal. The principle of stationary phase states that the major contribution 
to the integral is derived from points P at which 

dldP{a(P) r/v +P> = 0 

for large y, say, with r /y  = O( 1). Curves of constant phase are given by: 

or 

where r = R sin 8, y = - R cos O and CT = V/3/oo is the parameter. We note that 
IgI < 1 and that as r -+ 0,  R -+ 03 and O --f in; as ICT~ --f 1,0 --f 0 and R --f V@/wo ,  
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which is non-zero in general. The curve has a cusp at the point 6’ = 0 ,  R = V@D/w,; 
hence crests do not pass through the disturbance. Equations ( 1 )  show that, for 
given 8, R increases linearly with V ,  so that the pattern becomes more ‘swept- 
back’ with increasing 8. 

An equivalent result may be derived from the following, which is essentially 
the set of rules given by Ursell (1960) for the construction of curves of constant 

Y 
< Disturbance 

\ 

FIGURE 2 .  The angles 0, $, 6 and the radius %. 

phase. The phase velocity Cph = (wo sin $)/k is a known function of and k where 
k = (az+,tI2)*. We must require that the pattern be steady with respect to the 
disturbance so that COB $ = Cph/ V ,  and we may define the angle 6($, k) by the 
relation tan 6 = k(d$/dk).  Theradiusvector %(k) and the angle O ( k )  are defined by 

%(k) = A/ksinS(k), O ( k )  = + n - - $ - S ,  

where A is a constant which changes by 27~ from crest to crest. These relations 
define curves of constant phase. The angles are shown in figure 2; S is the angle 
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between the radius and the tangent and $ is the angle between the tangent and 
the horizontal, as previously. It is easily shown that 

1 wo %/ V A  = Jis-2 + (1 + s-","}, 

cot0 = s(2+s2), 

where s = Vk/wo is a parameter. We note that when 0 3 0, s -+ co and % -f A V/wo 
which is our previous result with A replaced by CD. The reader will note that since 
s = Vk/oo ,  we may write s = (T( 1 - v2)4. Substitution in equations ( 2 )  shows that 
0 = 0 and that t72 = R, when A = CJ, so that the results are equivalent. 

This demonstrates that the two approaches, the first based essentially on 
group velocity, the second on the kinematics of wave crests, are equivalent. 
Ursell(l960) showed that the latter implied the former for systems in which the 
magnitude of the phase velocity is a function k only. Here the phase velocity has 
an explicit dependence on $ also. The reader may verify that the result continues 
t o  hold if the group velocity is defined by the relation 

where k = k(sin y?, cos $). 

3. Comparison of theory and experiment 
A glass walled rectangular tank, 50 cm square by 100 cm deep, was carefully 

filled with salt water of varying salinity, producing a medium of linearly varying 
density after a sufficiently long period of time. The disturbances were produced 
by spheres of various sizes moved by means of thin nylon line attached to a 
constant speed motor, and were observed by means of a Toepler-schlieren 
system, similar to that employed in the experiments described by Mowbray & 
Rarity (1967) ; the reader should consult Mowbray (1967) for a detailed discussion 
of the techniques. The optical arrangements were such that a photograph of the 
undisturbed medium produced a plate of uniform contrast; lines of equal con- 
trast on a photograph of the disturbed medium are the loci of points of constant 
phase in the wave system. A typical wave pattern produced by a sphere moving 
upwards is shown in plate 1 ( a ) ,  for which the parameter V/w,d = 0.200; 
d is the diameter of the sphere. Observation of the wave pattern and of cine film 
of the wave pattern establishes that the crests and troughs are stationary with 
respect to the sphere, and confirms that waves from a sphere moving with uniform 
velocity appear only behind the sphere. It is also clear from plate 1 (a )  that crests 
do not pass through the disturbance but appear to have a cusp a t  some distance 
behind. Figure 3 shows adjacent curves of constant phase corresponding to 
phases 8n increasing by multiples of 2n to 16n, where R = 1 has been taken, 
arbitrarily, as the cusp on the curve of phase 8n. 

Plate l ( b ) ,  shows the wave pattern produced by the same sphere as that 
of plate 1 (a) ,  but the sphere is moving downwards and with a greater velocity, 
corresponding to V/w, d = - 0.295. Measnrementsof plates 1 (u) and (b)  agree well 
with the theoretical predictions. The experiment was repeated with spheres of 
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various diameters moving with different velocities, both negative and positive; 
the agreement with prediction was uniformly good throughout the range of 
experiments. Figure 4 shows w,, R/ V O  as a function of r9 together with rneasure- 
ments obtained from experiment; the average error in w,, Rl V O  is expected to be 
about & 0.05 for the curves of smallest phase and about t- 0.02 for the curve of 
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FIGURE 3. Curves of constant phase; the phases of adjacent curves differ by 27r. 
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FIGURE 4. The function w,R/V@ as a function of 8 (degrees). 
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highest phase; this error arises by virtue of the difficulty of accurately determining 
points of corresponding phase on photographs of the wave pattern. The error in 
8 is nominally zero. 

It will be observed that the wave patterns of plates 1 (a )  and (b )  bear some 
similarity to the Kelvin shipwave pattern. It is readily shown, however, 
that there are no double points of stationary phase and hence no envelope of 
waves corresponding to the wedge of semi-angle sin-l(1/43); there is no trans- 
verse wave system. What evidence there seems to be in plates 1 ( a )  and (b)  for the 
existence of an envelope is based on the form of the crest of the most recently 
created wave, a region in which the analysis cannot be expected to apply. 

Plate l (c )  shows the disturbance pattern produced by a sphere for which 
V/w,d  = 1.00. We see that there is no distinct and well-defined pattern as 
in plates 1 (a) and (b).  The critical value of 1 V/w,dl at which the pattern ceased 
to be well defined was found to be 0.9. In all experiments the Reynolds numbers 
of the sphere were kept below the value 200; as far as could be observed, the 
sphere did not shed vortices, although the non-uniform density appeared to 
influence markedly the behaviour of the fluid in the boundary layer. No system- 
matic study was made of the behaviour of fluid in the boundary layer, or in the 
wake, other than to ensure that ‘periodic vortices’ were not being shed. 

We mention, in passing, that reflexions of the ordinary kind were observed at 
the rigid side surfaces (see Mowbray & Rarity 1967); reflexions of the singular 
kind were also observed. The wave system to be expected from a more or less 
impulsive start was never observed, presumably being swamped by the steady 
pattern, neither were the effects of finite body size detected. 

4. Conclusion 
It is found that the linear theory of the phase configuration of small amplitude 

waves produced by a point disturbance moving uniformly in a vertical direction 
agrees well with the pattern observed to be produced by a moving sphere. It is 
confirmed that the pattern is stationary withrespect to the sphere and is the same, 
relative to the sphere, whether the sphere is ascending or descending. 

One of us (D. E. M.) was in recept of an S.R.C. research studentship. Acknow- 
ledgement is also made to the Ministry of Aviation who supported this work. 
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PLATE 1. ( a )  r'/w,d = 0.200. ( b )  I'/w,d = -0.295: the diameter of the sphere is 
the same in photographs ( a )  and (0). ( c )  T7/m,,d = 1.00. 
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